Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 765
Filtrar
1.
Sci Rep ; 14(1): 1069, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212454

RESUMO

Salivary gland myoepithelial cells regulate saliva secretion and have been implicated in the histological diversity of salivary gland tumors. However, detailed functional analysis of myoepithelial cells has not been determined owing to the few of the specific marker to isolate them. We isolated myoepithelial cells from the submandibular glands of adult mice using the epithelial marker EpCAM and the cell adhesion molecule CD49f as indicators and found predominant expression of the transcription factor FoxO1 in these cells. RNA-sequence analysis revealed that the expression of cell cycle regulators was negatively regulated in FoxO1-overexpressing cells. Chromatin immunoprecipitation analysis showed that FoxO1 bound to the p21/p27 promoter DNA, indicating that FoxO1 suppresses cell proliferation through these factors. In addition, FoxO1 induced the expression of ectodysplasin A (Eda) and its receptor Eda2r, which are known to be associated with X-linked hypohidrotic ectodermal dysplasia and are involved in salivary gland development in myoepithelial cells. FoxO1 inhibitors suppressed Eda/Eda2r expression and salivary gland development in primordial organ cultures after mesenchymal removal. Although mesenchymal cells are considered a source of Eda, myoepithelial cells might be one of the resources of Eda. These results suggest that FoxO1 regulates myoepithelial cell proliferation and Eda secretion during salivary gland development in myoepithelial cells.


Assuntos
Neoplasias das Glândulas Salivares , Fatores de Transcrição , Animais , Camundongos , Ectodisplasinas/genética , Células Epiteliais/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Glândula Submandibular/metabolismo , Fatores de Transcrição/metabolismo , Receptor Xedar/metabolismo
2.
PLoS One ; 19(1): e0291411, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38252617

RESUMO

Ectodysplasin A related hypohidrotic ectodermal dysplasia (XLHED) is a well-studied fetal developmental disorder in mammals that mainly affects ectodermal structures. It has been identified in a variety of species, including mice, rats, dogs, cattle, and humans. Here, we report the clinical, histological, and molecular biological analyses of a case of XLHED in Limousin cattle. An affected Limousin calf showed pathognomonic signs of ectodermal dysplasia, i.e. sparse hair and characteristic dental aplasia. Histopathologic comparison of hairy and glabrous skin and computed tomography of the mandible confirmed the phenotypic diagnosis. In addition, a keratoconjunctivitis sicca was noted in one eye, which was also confirmed histopathologically. To identify the causative variant, we resequenced the bovine X-chromosomal ectodysplasin A gene (EDA) of the affected calf and compared the sequences to the bovine reference genome. A single missense variant (rs439722471) at position X:g.80411716T>C (ARS-UCD1.3) was identified. The variant resulted in an amino acid substitution from glutamic acid to glycine within the highly conserved TNF-like domain. To rule out the possibility that the variant was relatively common in the cattle population we genotyped 2,016 individuals including 40% Limousin cattle by fluorescence resonance energy transfer analysis. We also tested 5,116 multibreed samples from Run9 of the 1000 Bull Genomes Project for the said variant. The variant was not detected in any of the cattle tested, confirming the assumption that it was the causative variant. This is the first report of Ectodysplasin A related hypohidrotic ectodermal dysplasia in Limousin cattle and the description of a novel causal variant in cattle.


Assuntos
Doenças dos Bovinos , Displasia Ectodérmica Anidrótica Tipo 1 , Animais , Bovinos , Masculino , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/veterinária , Ectodisplasinas/genética , Genes Ligados ao Cromossomo X , Mamíferos , Mutação de Sentido Incorreto , Doenças dos Bovinos/genética
3.
J Histochem Cytochem ; 71(11): 631-642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37731334

RESUMO

A growing body of evidence emerging supported that ectodysplasin-A (EDA) signaling pathway contributed to craniofacial development. However, their expression in condyle has not been elucidated yet. This study investigated the expression patterns of EDA, EDA receptor (EDAR), and EDAR-associated death domain (EDARADD) in condyle of postnatal mice. Histological staining and micro-computed tomography (CT) scanning showed that as endochondral ossification proceeded, the thickness of chondrocyte layer decreased, and the volume of mandibular condyle increased. Osteoclasts remained active throughout the condylar development. Immunohistochemistry staining demonstrated that EDA was expressed in almost all layers during the first 2 weeks after birth. EDA shifted from the mature and hypertrophic layers to fibrous and proliferating layers at postnatal 3 weeks. As condyle matured, the distribution of EDA tended to be limited to hypertrophic layer. The distribution patterns of EDAR and EDARADD were consistent with EDA, while the level of EDAR expression was slightly lower. mRNA expression levels of EDA signaling pathway-related components increased after birth. Furthermore, we evaluated the expression of EDA using ATDC5 in vitro. EDA increased during the late stage of chondrogenesis. These findings proved that EDA signaling pathway was involved in condylar development and acted as a regulatory factor in condylar maturation and differentiation.


Assuntos
Ectodisplasinas , Côndilo Mandibular , Camundongos , Animais , Ectodisplasinas/metabolismo , Côndilo Mandibular/metabolismo , Microtomografia por Raio-X , Transdução de Sinais , Receptores da Ectodisplasina/metabolismo
4.
Genes (Basel) ; 14(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37628697

RESUMO

In China, the sale of freshly slaughtered chickens is becoming increasingly popular in comparison with that of live chickens, and due to this emerging trend, the skin and feather follicle traits of yellow-feathered broilers have attracted a great deal of research attention. The feather follicle originates from the interaction between the epidermis and dermis in the early embryonic stage. Feather follicle morphogenesis is regulated by the Wnt, ectodysplasin (Eda), epidermal growth factor (EGF), fibroblast growth factor (FGF), bone morphogenetic protein (BMP), sonic hedgehog (Shh), Notch, and other signaling pathways that exist in epithelial and mesenchymal cells. The Wnt pathway is essential for feather follicle and feather morphogenesis. Eda interacts with Wnt to induce FGF expression, which attracts mesenchymal cell movement and aggregates to form feather follicle primordia. BMP acts as an inhibitor of the above signaling pathways to limit the size of the feather tract and distance between neighboring feather primordia in a dose-dependent manner. The Notch/Delta pathway can interact with the FGF pathway to promote feather bud formation. While not a part of the early morphogenesis of feather follicles, Shh and BMP signaling are involved in late feather branching. This review summarizes the roles of miRNAs/lncRNA in the regulation of feather follicle and feather growth and development and suggests topics that need to be solved in a future study. This review focuses on the regulatory mechanisms involved in feather follicle morphogenesis and analyzes the impact of SNP sites on feather follicle traits in poultry. This work may help us to understand the molecular regulatory networks influencing feather follicle growth and provide basic data for poultry carcass quality.


Assuntos
Plumas , Proteínas Hedgehog , Animais , Proteínas Hedgehog/genética , Galinhas/genética , Morfogênese/genética , Desenvolvimento Embrionário , Ectodisplasinas , Fatores de Crescimento de Fibroblastos
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108325

RESUMO

X-linked hypohidrotic ectodermal dysplasia (XLHED), caused by a genetic deficiency of ectodysplasin A1 (EDA1), is a rare developmental disorder of ectodermal derivatives such as hair, sweat glands, and teeth. The absence of sweat glands and perspiration can evoke life-threatening hyperthermia. As molecular genetic findings are not always conclusive, the concentrations of circulating EDA1 may help to distinguish between total and partial EDA1 deficiencies. We previously treated nine male patients with obvious signs of XLHED with a recombinant EDA1 replacement protein, Fc-EDA, either shortly after birth (n = 3) or by prenatal administration in gestational week 26 and beyond (n = 6). Here, we present the long-term follow-up for up to six years. In patients who had received Fc-EDA after birth, neither sweat glands nor sweating ability were detected at the age of 12-60 months. In contrast, prenatal EDA1 replacement resulted in ample sweat gland development and pilocarpine-inducible sweating in all treated subjects, who also attained more permanent teeth than their untreated affected relatives. Normal perspiration has persisted for six years in the two oldest boys treated repeatedly with Fc-EDA in utero. When they had a sauna, adequate thermoregulation was evidenced. Lower sweat production after single prenatal dosing may indicate a dose-response relationship. The absence of circulating EDA1 in five prenatally treated subjects proved that these children would have been unable to perspire if they had been left untreated. The sixth infant was shown to produce an EDA1 molecule that, albeit interacting with its cognate receptor, cannot activate EDA1 signaling. In conclusion, a causal treatment of XLHED before birth is feasible.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Criança , Gravidez , Feminino , Lactente , Humanos , Masculino , Pré-Escolar , Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica Anidrótica Tipo 1/terapia , Ectodisplasinas/genética , Displasia Ectodérmica/genética , Sudorese , Cabelo , Proteínas Recombinantes
7.
J Diabetes Res ; 2023: 5087761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091044

RESUMO

Background: Ectodysplasin A (EDA), a member of the TNF family, plays important roles in ectodermal development, while recent studies expanded its regulatory effects on insulin resistance and lipid metabolism. This study was the first time to investigate the correlation between circulating EDA and albuminuria in patients with T2DM. Methods: A total of 189 T2DM and 59 healthy subjects were enrolled in the study. We analyzed the concentrations of EDA by ELISA. Plasma glucose, insulin, HbA1c, lipids, creatinine, BUN, and UACR were also measured. Insulin resistance and pancreatic cell function were assessed by HOMA. Results: Circulating EDA concentration was significantly increased in T2DM patients and increased with the degree of albuminuria. EDA was positively correlated with age, FIns, HOMA-IR, HOMA-ß, Scr, and UACR, and negatively correlated with eGFR. Linear stepwise regression showed that FIns, HOMA-ß, and UACR were independent influencing factors of EDA. Logistic regression analysis showed that EDA was independently associated with the occurrence of albuminuria in T2DM. ROC curve showed that EDA had an area under the receiver operating curve of 0.701 [95%CI = (0.625 - 0.777), P < 0.001]. Conclusion: EDA is positively correlated with the degree of albuminuria in patients with T2DM and may be involved in the occurrence and progression of diabetic kidney disease (DKD).


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Resistência à Insulina , Humanos , Albuminúria , Ectodisplasinas
8.
Ital J Dermatol Venerol ; 158(1): 32-38, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36939501

RESUMO

BACKGROUND: Ectodermal dysplasias (EDs) are a large and complex group of disorders affecting the ectoderm-derived organs; the clinical and genetic heterogeneity of these conditions renders an accurate diagnosis more challenging. The aim of this study is to demonstrate the clinical utility of a targeted resequencing panel through enhancing the molecular and clinical diagnosis of EDs. Given the recent developments in gene and protein-based therapies for X-linked hypohidrotic ectodermal dysplasia, there is a re-emerging interest in identifying the genetic basis of EDs and the respective phenotypic presentations, in an aim to facilitate potential treatments for affected families. METHODS: We assessed seventeen individuals, from three unrelated families, who presented with diverse phenotypes suggestive of ED. An extensive multidisciplinary clinical evaluation was performed followed by a targeted exome resequencing panel (including genes that are known to cause EDs). MiSeqTM data software was used, variants with Qscore >30 were accepted. RESULTS: Three different previously reported hemizygous EDA mutations were found in the families. However, a complete genotype-phenotype correlation could not be established, neither in our patients nor in the previously reported patients. CONCLUSIONS: Targeted exome resequencing can provide a rapid and accurate diagnosis of EDs, while further contributing to the existing ED genetic data. Moreover, the identification of the disease-causing mutation in an affected family is crucial for proper genetic counseling and the establishment of a genotype-phenotype correlation which will subsequently provide the affected individuals with a more suitable treatment plan.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica Hipo-Hidrótica Autossômica Recessiva , Displasia Ectodérmica , Humanos , Ectodisplasinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/genética , Mutação
9.
Arch Oral Biol ; 150: 105689, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001412

RESUMO

OBJECTIVE: Identify the disease-causing mutation in a patient with features of X-linked hypohidrotic ectodermal dysplasia, which is a genetic disorder characterized by hypodontia, hypohidrosis and hypotrichosis. It is caused by mutations in Ectodysplasin A gene, which encodes ectodysplasin A, a member of the tumor necrosis factor superfamily. DESIGN: Genetic analysis, was performed using chromosomal microarray analysis, whole exome sequencing and multiplex ligation-dependent probe amplification analysis in a 4-year-old boy with hypohidrotic ectodermal dysplasia features. Moreover, the boy's parents were tested for clinically significant findings identified in order to elucidate the pattern of inheritance of the finding detected in the proband. RESULTS: A novel deletion of entire exon 4 in Ectodysplasin A gene identified in the 4-year-old patient. This deletion was found in heterozygous state in the mother of the proband and was not detected in his father. RNA analysis revealed an in-frame deletion r.527_706del, p.(176_236del) in exon 4 of the Ectodysplasin A gene. CONCLUSION: We identified a novel gross deletion in the Ectodysplasin A gene in a male patient with X-linked hypohidrotic ectodermal dysplasia. Clinical and molecular genetic analysis are crucial to set an accurate diagnosis in patients with hypohidrotic ectodermal dysplasia. These results highlight the importance of the collagen domain of Ectodysplasin A, encoded by exon 4, for its function in vivo.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Humanos , Masculino , Pré-Escolar , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , Linhagem , Mutação , Éxons/genética
10.
J Invest Dermatol ; 143(8): 1529-1537.e2, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36804570

RESUMO

XEDAR is a member of the TNF receptor subfamily and a mediator of the ectodysplasin (EDA) pathway. EDA signaling plays evolutionarily conserved roles in the development of the ectodermal appendage organ class, which includes hair, eccrine sweat glands, and mammary glands. Loss-of-function sequence variants of EDA, which encodes the two major ligand isoforms, EDA-A1 and EDA-A2, result in X-linked hypohidrotic ectodermal dysplasia characterized by defects in two or more types of ectodermal appendages. EDA-A1 and EDA-A2 signal through the receptors EDAR and XEDAR, respectively. Although the contributions of the EDA-A1/EDAR signaling pathway to EDA-dependent ectodermal appendage phenotypes have been extensively characterized, the significance of the EDA-A2/XEDAR branch of the pathway has remained obscure. In this study, we report the phenotypic consequences of disrupting the EDA-A2/XEDAR pathway on mammary gland differentiation and growth. Using a mouse Xedar knockout model, we show that Xedar has a specific and temporally restricted role in promoting late pubertal growth and branching of the mammary epithelium that can be influenced by genetic background. Our findings implicate Xedar in ectodermal appendage development and suggest that the EDA-A2/XEDAR signaling axis contributes to the etiology of EDA-dependent mammary phenotypes.


Assuntos
Ectodisplasinas , Proteínas de Membrana , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Proteínas de Membrana/genética , Morfogênese , Receptores do Fator de Necrose Tumoral , Transdução de Sinais , Animais , Camundongos
11.
Nat Commun ; 14(1): 767, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36765055

RESUMO

EDA is a tumor necrosis factor (TNF) family member, which functions together with its cognate receptor EDAR during ectodermal organ development. Mutations of EDA have long been known to cause X-linked hypohidrotic dysplasia in humans characterized by primary defects in teeth, hair and sweat glands. However, the structural information of EDA interaction with EDAR is lacking and the pathogenic mechanism of EDA variants is poorly understood. Here, we report the crystal structure of EDA C-terminal TNF homology domain bound to the N-terminal cysteine-rich domains of EDAR. Together with biochemical, cellular and mouse genetic studies, we show that different EDA mutations lead to varying degrees of ectodermal developmental defects in mice, which is consistent with the clinical observations on human patients. Our work extends the understanding of the EDA signaling mechanism, and provides important insights into the molecular pathogenesis of disease-causing EDA variants.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Humanos , Camundongos , Animais , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , Ectodisplasinas/metabolismo , Displasia Ectodérmica/genética , Transdução de Sinais , Ectoderma/metabolismo , Mutação , Receptor Edar/genética
12.
Genes (Basel) ; 14(1)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672894

RESUMO

X-linked hypohidrotic ectodermal dysplasia (XLHED) is a rare genetic disorder characte-rised by abnormal development of the skin and its appendages, such as hair and sweat glands, the teeth, and mucous glands of the airways, resulting in serious, sometimes life-threatening complications like hyperthermia or recurrent respiratory infections. It is caused by pathogenic variants of the ectodysplasin A gene (EDA). Most affected males are hemizygous for EDA null mutations that lead to the absence or inactivity of the signalling protein ectodysplasin A1 (EDA1) and, thus, to the full-blown phenotype with inability to perspire and few if any teeth. There are currently no long-term treatment options for XLHED. ER004 represents a first-in-class protein replacement molecule designed for specific, high-affinity binding to the endogenous EDA1 receptor (EDAR). Its proposed mechanism of action is the replacement of missing EDA1 in yet unborn patients with XLHED. Once bound to EDAR, ER004 activates the EDA/NFκB signalling pathway, which triggers the transcription of genes involved in the normal development of multiple tissues. Following preclinical studies, named-patient use cases demonstrated significant potential of ER004 in affected males treated in utero during the late second and third trimesters of pregnancy. In order to confirm these results, we started the EDELIFE trial, a prospective, open-label, genotype-match controlled, multicentre clinical study to investigate the efficacy and safety of intra-amniotic ER004 administration as a prenatal treatment for male subjects with XLHED. This article summarises the rationale, the study protocol, ethical issues of the trial, and potential pitfalls.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Feminino , Gravidez , Masculino , Humanos , Displasia Ectodérmica Anidrótica Tipo 1/genética , Estudos Prospectivos , Displasia Ectodérmica/genética , Ectodisplasinas/genética , Pele , Ensaios Clínicos Fase II como Assunto
13.
Anat Rec (Hoboken) ; 306(6): 1201-1213, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36239299

RESUMO

The scutes of the turtle shell are epidermal shields that begin their formation during the early stages of shell development. Like other skin appendages, turtle scutes are hypothesized to be patterned by reaction-diffusion systems. We have previously established ex vivo and in silico systems to study these mechanisms experimentally and have further shown that mathematical models can explain the dynamics of the induction of turtle scute primordia and the generation of final scute architecture. Using these foundations, we expand our current knowledge and test the roles of ectodysplasin and activin signaling in the development of turtle scutes. We find that these molecules play important roles in the prepatterning of scute primordia along the carapacial ridge and show that blocking Edar signaling may lead to a complete loss of marginal scute primordia. We show that it is possible to reproduce these observations using simple mathematical modeling, thereby suggesting a stabilizing role for ectodysplasin within the reaction-diffusion mechanisms. Finally, we argue that our findings further entrench turtle scutes within a class of developmental systems composed of hierarchically nested reaction-diffusion mechanisms, which is conserved across ectodermal organs.


Assuntos
Tartarugas , Animais , Ectodisplasinas , Epiderme , Transdução de Sinais , Desenvolvimento Embrionário
14.
Acta Clin Belg ; 78(4): 270-279, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36300335

RESUMO

OBJECTIVES: Hepatokines are proteins secreted by hepatocytes and many hepatokines such as fetuin A/B, selenoprotein P have been shown to play a role in the pathogenesis of many metabolic dysfunctions such as diabetes, insulin resistance, hypertension, and metabolic syndrome by showing autocrine, paracrine and systemic effects. Ectodysplasin A (EDA) is a recently discovered hepatokine that plays a role in the development of ectodermal structures. In recent studies, it has been revealed that EDA may be associated with the pathogenesis of non-alcoholic liver disease, insulin resistance, Type 2 diabetes mellitus. The close relationship between these metabolic diseases and coronary artery disease (CAD), which may be associated with insulin resistance, has been well documented in previous studies. However, until now, there is no study examining the relationship of EDA with CAD and its effect on long-term outcomes. In this study, we aim to reveal this relationship on patients presenting with ST elevation myocardial infarction (STEMI). METHODS: EDA levels of 544 patients who applied to the study with STEMI and 544 people without coronary artery disease were included in the control group, and the patients with STEMI were followed for median of 33.7 ± 6.8 months. RESULTS: We found that EDA levels were significantly higher in patients with STEMI and that EDA levels were proportional to the severity of CAD (p < 0.001) also EDA levels may be an independent predictor of poor clinical outcome in patients with STEMI. CONCLUSION: These results suggest that EDA is closely related to the presence and severity of CAD.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Doença da Artéria Coronariana/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Ectodisplasinas , Diabetes Mellitus Tipo 2/complicações , Fatores de Risco , Resultado do Tratamento
16.
Arch Oral Biol ; 146: 105600, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36470092

RESUMO

OBJECTIVE: This study aims to investigate a novel pathogenic variant in a Chinese family of non-syndromic tooth agenesis (NSTA) and study the impact of the variant on related protein and pathway. DESIGN: One NSTA family was collected. Whole exome sequencing and Sanger sequencing were performed on the proband with NSTA and his 5 family members. The pathogenic influence of the mutant is evaluated by bioinformatics analyses including evolutionary conservation analysis and secondary structure prediction. Molecular dynamics (MD) simulations and binding free energy calculations were then performed to explore changes in the tertiary structure and binding ability of the protein. RESULTS: We found a novel missense ectodysplasin A receptor (EDAR) variant (c .1292 T > G; p.Ile431Arg) in all affected family members. The results of bioinformatics analyses revealed that the EDAR had harmful changes after mutation. MD simulations and the binding free energy calculations results showed that the mutant EDAR protein and EDAR/ectodysplasin-A receptor-associated adapter (EDARADD) complex displayed tertiary structural change, and EDAR possessed a lower affinity to EDARADD after mutation. CONCLUSIONS: We found a novel EDAR variant (c.1292 T > G; p.Ile431Arg) in one NSTA family, which affects the binding of EDAR and EDARADD.


Assuntos
Anodontia , Simulação de Dinâmica Molecular , Humanos , Receptores da Ectodisplasina/genética , Anodontia/genética , Mutação , Proteínas Wnt/genética , Receptor Edar/genética , Ectodisplasinas/genética
17.
Cells Dev ; 173: 203823, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36496080

RESUMO

The Mexican tetra (Astyanax mexicanus) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.


Assuntos
Characidae , Dente , Animais , Ectodisplasinas/genética , Characidae/genética , Evolução Biológica , Osso e Ossos
18.
Mol Genet Genomic Med ; 11(4): e2119, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36448232

RESUMO

BACKGROUND: Hypohidrotic ectodermal dysplasia (HED) mainly results from gene mutations in the EDA/EDAR/NF-κB pathway. Function analysis of the mutations in the collagen domain of ectodysplasin A (EDA)result in HED has been rarely studied. This study aimed at determining the mechanism by which the novel collagen domain mutation of EDA results in HED. METHODS: We analyzed the DNAs from a Chinese family with HED and performed bioinformatics analysis. A new three-dimensional structure model of the EDA trimer was built and used to predict the effect of the mutations on EDA. We performed a western blot to detect EDA1 proteins in cell lysates and supernatants. We then performed coimmunoprecipitation to determine whether the mutation would affect the interaction of EDA1 with the EDA receptor (EDAR). Dual luciferase reporter assay and immunofluorescence were performed to detect the effect of the mutant EDA1 protein on nuclear factor kappa B (NF-κB) activation. RESULTS: A novel missense mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA was detected. The mutation was predicted to be disease-causing. A three-dimensional structure model of the EDA trimer was first built in this study, in which the mutation site is located around the receptor binding domain. Functional studies showed that there was no difference in the secretion activity between the mutant EDA1 and the wild-type EDA1. However, the receptor-binding activity and the transcription activation of NF-κB were impaired by the mutation. CONCLUSION: We identified a novel mutation (c.593G > A, p. Gly198Glu) in the collagen domain of EDA. Bioinformatics analysis and functional studies showed this mutation was damaging, indicating that mutations in the collagen domain of EDA could result in HED by affecting the receptor-binding activity of EDA and the transcriptional activity of NF-κB.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Displasia Ectodérmica , Doenças Dentárias , Humanos , Displasia Ectodérmica Anidrótica Tipo 1/genética , Ectodisplasinas/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Displasia Ectodérmica/genética , Mutação , Colágeno/genética
19.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555342

RESUMO

Ectodysplasin A (EDA), a ligand of the TNF family, plays an important role in maintaining the homeostasis of the ocular surface. EDA is necessary for the development of the meibomian gland, the lacrimal gland, as well as the proliferation and barrier function of the corneal epithelium. The mutation of EDA can induce the destruction of the ocular surface resulting in keratopathy, abnormality of the meibomian gland and maturation of the lacrimal gland. Experimental animal studies showed that a prenatal ultrasound-guided intra-amniotic injection or postnatal intravenous administration of soluble recombinant EDA protein can efficiently prevent the development of ocular surface abnormalities in EDA mutant animals. Furthermore, local application of EDA could restore the damaged ocular surface to some extent. Hence, a recombinant EDA-based therapy may serve as a novel paradigm to treat ocular surface disorders, such as meibomian gland dysfunction and corneal epithelium abnormalities.


Assuntos
Doenças da Córnea , Epitélio Corneano , Aparelho Lacrimal , Feminino , Animais , Gravidez , Ectodisplasinas/genética , Epitélio Corneano/metabolismo , Aparelho Lacrimal/metabolismo , Doenças da Córnea/metabolismo , Homeostase
20.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293046

RESUMO

Pathogenic variants of the gene Eda cause X-linked hypohidrotic ectodermal dysplasia (XLHED), which is characterized by structural abnormalities or lack of ectodermal appendages. Signs of dysplasia are not restricted to derivatives of the ectodermal layer, but mesodermal abnormalities, such as craniofacial dysmorphism, are also frequently observed, suggesting close reciprocal interactions between the ectoderm and mesoderm; however, a causal link has remained unsubstantiated. We investigated the functional impact of defective ectodysplasin A1 (Eda1) signaling on postnatal bone homeostasis in Eda1-deficient Tabby mice. Interestingly, Eda1 was detected in wild-type mouse calvariae throughout postnatal lifetime. In calvariae, bone-lining Osterix (Osx)+ osteoblasts stained positive for Eda1, and osteoclasts were revealed as Eda receptor (Edar)-positive. Moreover, adult Eda1-deficient calvarial bone showed osteopetrosis-like changes with significantly diminished marrow space, which was maintained during adulthood. Concomitantly with osteopetrosis-like changes, Tabby calvarial bone and Tabby bone marrow-derived osteoclasts had far less osteoclastic activity-associated co-enzymes including cathepsin K, Mmp9, Trap, and Tcirg1 (V-type proton ATPase a3 subunit) compared with wild-type calvariae in vivo or osteoclasts in vitro, indicating that Eda1 deficiency may affect the activity of osteoclasts. Finally, we confirmed that nuclear Nfatc1-positive osteoclasts were strongly diminished during mature osteoclastic differentiation under M-CSF and RANKL in the Tabby model, while Fc-EDA treatment of Tabby-derived osteoclasts significantly increased nuclear translocation of Nfatc1. Furthermore, we identified enhanced Nfatc1 and NF-κB transcriptional activity following Fc-EDA treatment in vitro using luciferase assays. Overall, the results indicate that diminished expressions of osteoclastic activity-associated co-enzymes may lead to disturbed bone homeostasis in Tabby calvariae postnatally.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Osteopetrose , Camundongos , Animais , Ectodisplasinas/genética , Catepsina K/genética , Fator Estimulador de Colônias de Macrófagos , Metaloproteinase 9 da Matriz , NF-kappa B/metabolismo , Osteopetrose/genética , Osteoclastos/metabolismo , Prótons , Luciferases , Crânio/metabolismo , Adenosina Trifosfatases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...